
Chapter 12

Binary Trees

Concepts:
. Binary trees
. Tree traversals
. Recursion

I think that I shall never see
A poem lovely as a binary tree.

—Bill Amend as Jason Fox

RECURSION IS A BEAUTIFUL APPROACH TO STRUCTURING. We commonly think of
recursion as a form of structuring the control of programs, but self-reference can
be used just as effectively in the structuring of program data. In this chapter, we
investigate the use of recursion in describing branching structures called trees.

Most of the structures we have already investigated are linear—their natural
presentation is in a line. Trees branch. The result is that where there is an
inherent ordering in linear structures, we find choices in the way we order the
elements of a tree. These choices are an indication of the reduced “friction” of
the structure and, as a result, trees provide us with the fastest ways to solve
many problems.

Before we investigate the implementation of trees, we must develop a con-
cise terminology.

12.1 Terminology

A tree is a collection of elements, called nodes, and relations between them,
called edges. Usually, data are stored within the nodes of a tree. Two trees are
disjoint if no node or edge is found common to both. A trivial tree has no nodes
and thus no data. An isolated node is also a tree.

From these primitives we may recursively construct more complex trees. Let
r be a new node and let T1, T2, . . . , Tn be a (possibly empty) set—a forest—of
distinct trees. A new tree is constructed by making r the root of the tree, and
establishing an edge between r and the root of each tree, Ti, in the forest. We
refer to the trees, Ti, as subtrees. We draw trees with the root above and the
trees below. Figure 12.1g is an aid to understanding this construction.

The parent of a node is the adjacent node appearing above it (see Fig-
ure 12.2). The root of a tree is the unique node with no parent. The ancestors of
a node n are the roots of trees containing n: n, n’s parent, n’s parent’s parent,



278 Binary Trees

(a) (b) (c) (d)

(e) (f) (g)

b

r

a

Figure 12.1 Examples of trees. Trees (a) and (b) are three-node trees. Trees are
sometimes symbolized abstractly, as in (c). Tree (b) is full, but (d) is not. Tree (e) is not
full but is complete. Complete trees are symbolized as in (f). Abstract tree (g) has root r
and subtrees (a) and (b).



12.1 Terminology 279

Level 2

’s parent
’s child

(a)

r

i

l

s

(b)

b

c

c
a

a
Root

Interior node

Leaf

Level 0

Level 1

Figure 12.2 Anatomy of trees. (a) A full (and complete) tree. (b) A complete tree that
is not full. Here, the unique path from node i to root r is bold: i has depth 2. Also,
indicated in bold is a longest path from s to a leaf l: s has height 2 and depth 1. The
subtree rooted at s has 5 nodes.

and so on. The root is the ancestor shared by every node in the tree. A child
of a node n is any node that has n as its parent. The descendants of a node n
are those nodes that have n as an ancestor. A leaf is a node with no children.
Note that n is its own ancestor and descendant. A node m is the proper ancestor
(proper descendant) of a node n if m is an ancestor (descendant) of n, but not
vice versa. In a tree T , the descendants of n form the subtree of T rooted at n.
Any node of a tree T that is not a leaf is an interior node. Roots can be interior
nodes. Nodes m and n are siblings if they share a parent.

A path is the unique shortest sequence of edges from a node n to an ancestor.
The length of a path is the number of edges it mentions. The height of a node n
in a tree is the length of any longest path between a leaf and n. The height of a
tree is the height of its root. This is the maximum height of any node in the tree.
The depth (or level) of a node n in its tree T is the length of the path from n to
T ’s root. The sum of a node’s depth and height is no greater than the height of
the tree. The degree of a node n is the number of its children. The degree of a
tree (or its arity) is the maximum degree of any of its nodes. A binary tree is a
tree with arity less than or equal to 2. A 1-ary binary tree is termed degenerate.
A node n in a binary tree is full if it has degree 2. In an oriented tree we will call
one child the left child and the other the right child. A full binary tree of height h



280 Binary Trees

has leaves only on level h, and each of its internal nodes is full. The addition of
a node to a full binary tree causes its height to increase. A complete binary tree
of height h is a full binary tree with 0 or more of the rightmost leaves of level h
removed.

12.2 Example: Pedigree Charts

With the growth of the Internet, many people have been able to make contact
with long-lost ancestors, not through some new technology that allows contact
with spirits, but through genealogical databases. One of the reasons that ge-
nealogy has been so successful on computers is that computers can organize
treelike data more effectively than people.

One such organizational approach is a pedigree chart. This is little more than
a binary tree of the relatives of an individual. The root is an individual, perhaps
yourself, and the two subtrees are the pedigrees of your mother and father.1Steve points

out:
relationships in

these trees is
upside down!

They, of course, have two sets of parents, with pedigrees that are rooted at your
grandparents.

To demonstrate how we might make use of a BinaryTree class, we might
imagine the following code that develops the pedigree for someone named
George Bush:2

Pedigree

// ancestors of George H. W. Bush

// indentation is provided to aid in understanding relations

BinaryTree<String> JSBush = new BinaryTree<String>("Rev. James");

BinaryTree<String> HEFay = new BinaryTree<String>("Harriet");

BinaryTree<String> SPBush = new BinaryTree<String>("Samuel",JSBush,HEFay);

BinaryTree<String> RESheldon = new BinaryTree<String>("Robert");

BinaryTree<String> MEButler = new BinaryTree<String>("Mary");

BinaryTree<String> FSheldon = new BinaryTree<String>("Flora",RESheldon,MEButler);

BinaryTree<String> PSBush = new BinaryTree<String>("Prescott",SPBush,FSheldon);

BinaryTree<String> DDWalker = new BinaryTree<String>("David");

BinaryTree<String> MABeaky = new BinaryTree<String>("Martha");

BinaryTree<String> GHWalker = new BinaryTree<String>("George",DDWalker,MABeaky);

BinaryTree<String> JHWear = new BinaryTree<String>("James II");

BinaryTree<String> NEHolliday = new BinaryTree<String>("Nancy");

BinaryTree<String> LWear = new BinaryTree<String>("Lucretia",JHWear,NEHolliday);

BinaryTree<String> DWalker = new BinaryTree<String>("Dorothy",GHWalker,LWear);

1 At the time of this writing, modern technology has not advanced to the point of allowing nodes
of degree other than 2.
2 This is the Texan born in Massachusetts; the other Texan was born in Connecticut.



12.3 Example: Expression Trees 281

BinaryTree<String> GHWBush = new BinaryTree<String>("George",PSBush,DWalker);

For each person we develop a node that either has no links (the parents were
not included in the database) or has references to other pedigrees stored as
BinaryTrees. Arbitrarily, we choose to maintain the father’s pedigree on the
left side and the mother’s pedigree along the right. We can then answer simple
questions about ancestry by examining the structure of the tree. For example,
who are the direct female relatives of the President?

// Question: What are George H. W. Bush's ancestors' names,

// following the mother's side?

BinaryTree<String> person = GHWBush;

while (!person.right().isEmpty())

{

person = person.right(); // right branch is mother

System.out.println(person.value()); // value is name

}

The results are

Dorothy

Lucretia

Nancy

Exercise 12.1 These are, of course, only some of the female relatives of President
Bush. Write a program that prints all the female names found in a BinaryTree

representing a pedigree chart.

One feature that would be useful, would be the ability to add branches to
a tree after the tree was constructed. For example, we might determine that
James Wear had parents named William and Sarah. The database might be
updated as follows:

// add individual directly

JHWear.setLeft(new BinaryTree<String>("William"));

// or keep a reference to the pedigree before the update:

BinaryTree<String> SAYancey = new BinaryTree<String>("Sarah");

JHWear.setRight(SAYancey);

A little thought suggests a number of other features that might be useful in
supporting the pedigree-as-BinaryTree structure.

12.3 Example: Expression Trees

Most programming languages involve mathematical expressions that are com-
posed of binary operations applied to values. An example from Java is the
simple expression R = 1 + (L - 1) * 2. This expression involves four opera-
tors (=, +, -, and *), and 5 values (R, 1, L, 1, and 2). Languages often represent
expressions using binary trees. Each value in the expression appears as a leaf,



282 Binary Trees

while the operators are internal nodes that represent the reduction of two values
to one (for example, L - 1 is reduced to a single value for use on the left side
of the multiplication sign). The expression tree associated with our expression
is shown in Figure 12.3a. We might imagine that the following code constructs
the tree and prints −1:

Calc

BinaryTree<term> v1a,v1b,v2,vL,vR,t;

// set up values 1 and 2, and declare variables

v1a = new BinaryTree<term>(new value(1));

v1b = new BinaryTree<term>(new value(1));

v2 = new BinaryTree<term>(new value(2));

vL = new BinaryTree<term>(new variable("L",0));// L=0

vR = new BinaryTree<term>(new variable("R",0));// R=0

// set up expression

t = new BinaryTree<term>(new operator('-'),vL,v1a);

t = new BinaryTree<term>(new operator('*'),t,v2);

t = new BinaryTree<term>(new operator('+'),v1b,t);

t = new BinaryTree<term>(new operator('='),vR,t);

// evaluate and print expression

System.out.println(eval(t));

Once an expression is represented as an expression tree, it may be evaluated
by traversing the tree in an agreed-upon manner. Standard rules of mathemati-
cal precedence suggest that the parenthesized expression (L-1) should be eval-
uated first. (The L represents a value previously stored in memory.) Once the
subtraction is accomplished, the result is multiplied by 2. The product is then
added to 1. The result of the addition is assigned to R. The assignment opera-
tor is treated in a manner similar to other common operators; it just has lower
precedence (it is evaluated later) than standard mathematical operators. Thus
an implementation of binary trees would be aided by a traversal mechanism
that allows us to manipulate values as they are encountered.

12.4 Implementation

We now consider the implementation of binary trees. As with List implementa-
tions, we will construct a self-referential BinaryTree class. The recursive design
motivates implementation of many of the BinaryTree operations as recursive
methods. However, because the base case of recursion often involves an empty
tree we will make use of a dedicated node that represents the empty tree. This
simple implementation will be the basis of a large number of more advanced
structures we see throughout the remainder of the text.



12.4 Implementation 283

R

=

+

1 *

2-

L 1

=

+

1 *

1

- 2

L

R

(a)

(b)

Figure 12.3 Expression trees. (a) An abstract expression tree representing
R=1+(L-1)*2. (b) A possible connectivity of an implementation using references.



284 Binary Trees

12.4.1 The BinaryTree Implementation

Our first step toward the development of a binary tree implementation is to rep-
resent an entire subtree as a reference to its root node. The node will maintain
a reference to user data and related nodes (the node’s parent and its two chil-
dren) and directly provides methods to maintain a subtree rooted at that node.
All empty trees will be represented by one or more instances of BinaryTrees
called “empty” trees. This approach is not unlike the “dummy nodes” provided
in our study of linked lists. Allowing the empty tree to be an object allows
programs to call methods on trees that are empty. If the empty tree were rep-
resented by a null pointer, it would be impossible to apply methods to the
structure. Here is the interface (again we have omitted right-handed versions
of handed operations):

BinaryTree

public class BinaryTree<E>

{

public BinaryTree()

// post: constructor that generates an empty node

public BinaryTree(E value)

// post: returns a tree referencing value and two empty subtrees

public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)

// post: returns a tree referencing value and two subtrees

public BinaryTree<E> left()

// post: returns reference to (possibly empty) left subtree

public BinaryTree<E> parent()

// post: returns reference to parent node, or null

public void setLeft(BinaryTree<E> newLeft)

// post: sets left subtree to newLeft

// re-parents newLeft if not null

protected void setParent(BinaryTree<E> newParent)

// post: re-parents this node to parent reference, or null

public Iterator<E> iterator()

// post: returns an in-order iterator of the elements

public boolean isLeftChild()

// post: returns true if this is a left child of parent

public E value()

// post: returns value associated with this node

public void setValue(E value)

// post: sets the value associated with this node



12.4 Implementation 285

parent

value

left right

Figure 12.4 The structure of a BinaryTree. The parent reference opposes a left or
right child reference in parent node.

}

Figure 12.3b depicts the use of BinaryTrees in the representation of an entire
tree. We visualize the structure of a BinaryTree as in Figure 12.4. To construct
such a node, we require three pieces of information: a reference to the data
that the user wishes to associate with this node, and left and right references
to binary tree nodes that are roots of subtrees of this node. The parent refer-
ence is determined implicitly from opposing references. The various methods
associated with constructing a BinaryTree are as follows:

protected E val; // value associated with node

protected BinaryTree<E> parent; // parent of node

protected BinaryTree<E> left, right; // children of node

public BinaryTree()

// post: constructor that generates an empty node

{

val = null;

parent = null; left = right = this;

}

public BinaryTree(E value)

// post: returns a tree referencing value and two empty subtrees

{

Assert.pre(value != null, "Tree values must be non-null.");

val = value;

right = left = new BinaryTree<E>();

setLeft(left);

setRight(right);

}

public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)

// post: returns a tree referencing value and two subtrees

{

Assert.pre(value != null, "Tree values must be non-null.");



286 Binary Trees

val = value;

if (left == null) { left = new BinaryTree<E>(); }

setLeft(left);

if (right == null) { right = new BinaryTree<E>(); }

setRight(right);

}

The first constructor is called when an empty BinaryTree is needed. The result
of this constructor are empty nodes that will represent members of the fringe
of empty trees found along the edge of the binary tree. In the three-parameter
variant of the constructor we make two calls to “setting” routines. These rou-
tines allow one to set the references of the left and right subtrees, but also
ensure that the children of this node reference this node as their parent. This is
the direct cost of implementing forward and backward references along every
link. The return, though, is the considerable simplification of other code within
the classes that make use of BinaryTree methods.

Principle 19 Don’t let opposing references show through the interface.
N

NW

SW
SE

NE

W

S

E

When maintenance of opposing references is left to the user, there is an oppor-
tunity for references to become inconsistent. Furthermore, one might imagine
implementations with fewer references (it is common, for example, to avoid the
parent reference); the details of the implementation should be hidden from the
user, in case the implementation needs to be changed.

Here is the code for setLeft (setRight is similar):

public void setLeft(BinaryTree<E> newLeft)

// post: sets left subtree to newLeft

// re-parents newLeft if not null

{

if (isEmpty()) return;

if (left != null && left.parent() == this) left.setParent(null);

left = newLeft;

left.setParent(this);

}

If the setting of the left child causes a subtree to be disconnected from this node,
and that subtree considers this node to be its parent (it should), we disconnect
the node by setting its parent to null. We then set the left child reference to the
value passed in. Any dereferenced node is explicitly told to set its parent refer-
ence to null. We also take care to set the opposite parent reference by calling
the setParent method of the root of the associated non-trivial tree. Because
we want to maintain consistency between the downward child references and
the upward parent references, we declare setParent to be protected to make
it impossible for the user to refer to directly:

protected void setParent(BinaryTree<E> newParent)

// post: re-parents this node to parent reference, or null



12.5 Example: An Expert System 287

{

if (!isEmpty()) {

parent = newParent;

}

}

It is, of course, useful to be able to access the various references once they
have been set. We accomplish this through the accessor functions such as left:

public BinaryTree<E> left()

// post: returns reference to (possibly empty) left subtree

{

return left;

}

Once the node has been constructed, its value can be inspected and modified
using the value-based functions that parallel those we have seen with other
types:

public E value()

// post: returns value associated with this node

{

return val;

}

public void setValue(E value)

// post: sets the value associated with this node

{

val = value;

}

Once the BinaryTree class is implemented, we may use it as the basis for our
implementation of some fairly complex programs and structures.

12.5 Example: An Expert System

Anyone who has been on a long trip with children has played the game Twenty
Questions. It’s not clear why this game has this name, because the questioning
often continues until the entire knowledge space of the child is exhausted. We
can develop a very similar program, here, called InfiniteQuestions. The cen-
tral component of the program is a database, stored as a BinaryTree. At each
leaf is an object that is a possible guess. The interior nodes are questions that
help distinguish between the guesses.

Figure 12.5 demonstrates one possible state of the database. To simulate a
questioner, one asks the questions encountered on a path from the root to some
leaf. If the response to the question is positive, the questioning continues along
the left branch of the tree; if the response is negative, the questioner considers
the right.



288 Binary Trees

a computer

Does it have a horn?

Is it magical?

a unicorn a car

Figure 12.5 The state of the database in the midst of playing InfiniteQuestions.

Exercise 12.2 What questions would the computer ask if you were thinking of a
truck?

Of course, we can build a very simple database with a single value—perhaps
a computer. The game might be set up to play against a human as follows:

Infinite-

Questions

public static void main(String args[])

{

Scanner human = new Scanner(System.in);

// construct a simple database -- knows only about a computer

BinaryTree<String> database = new BinaryTree<String>("a computer");

System.out.println("Do you want to play a game?");

while (human.nextLine().equals("yes"))

{

System.out.println("Think of something...I'll guess it");

play(human,database);

System.out.println("Do you want to play again?");

}

System.out.println("Have a good day!");

}

When the game is played, we are likely to lose. If we lose, we can still benefit by
incorporating information about the losing situation. If we guessed a computer
and the item was a car, we could incorporate the car and a question “Does it
have wheels?” to distinguish the two objects. As it turns out, the program is not
that difficult.

public static void play(Scanner human, BinaryTree<String> database)

// pre: database is non-null

// post: the game is finished, and if we lost, we expanded the database

{

if (!database.left().isEmpty())

{ // further choices; must ask a question to distinguish them

System.out.println(database.value());

if (human.nextLine().equals("yes"))

{



12.5 Example: An Expert System 289

play(human,database.left());

} else {

play(human,database.right());

}

} else { // must be a statement node

System.out.println("Is it "+database.value()+"?");

if (human.nextLine().equals("yes"))

{

System.out.println("I guessed it!");

} else {

System.out.println("Darn. What were you thinking of?");

// learn!

BinaryTree<String> newObject = new BinaryTree<String>(human.nextLine());

BinaryTree<String> oldObject = new BinaryTree<String>(database.value());

database.setLeft(newObject);

database.setRight(oldObject);

System.out.println("What question would distinguish "+

newObject.value()+" from "+

oldObject.value()+"?");

database.setValue(human.nextLine());

}

}

}

The program can distinguish questions from guesses by checking to see there is
a left child. This situation would suggest this node was a question since the two
children need to be distinguished.

The program is very careful to expand the database by adding new leaves
at the node that represents a losing guess. If we aren’t careful, we can easily
corrupt the database by growing a tree with the wrong topology.

Here is the output of a run of the game that demonstrates the ability of the
database to incorporate new information—that is to learn:

Do you want to play a game?

Think of something...I'll guess it

Is it a computer?

Darn. What were you thinking of?

What question would distinguish a car from a computer?

Do you want to play again?

Think of something...I'll guess it

Does it have a horn?

Is it a car?

Darn. What were you thinking of?

What question would distinguish a unicorn from a car?

Do you want to play again?

Think of something...I'll guess it

Does it have a horn?

Is it magical?

Is it a car?

I guessed it!



290 Binary Trees

Do you want to play again?

Have a good day!

Exercise 12.3 Make a case for or against this program as a (simple) model for
human learning through experience.

We now discuss the implementation of a general-purpose Iterator for the
BinaryTree class. Not surprisingly a structure with branching (and therefore a
choice in traversal order) makes traversal implementation more difficult. Next,
we consider the construction of several Iterators for binary trees.

12.6 Traversals of Binary Trees

We have seen, of course, there is a great industry in selling calculators that
allow users to enter expressions in what appear to be arbitrary ways. For ex-
ample, some calculators allow users to specify expressions in infix form, where
keys associated with operators are pressed between operands. Other brands of
calculators advocate a postfix3 form, where the operator is pressed only after the
operands have been entered. Reconsidering our representation of expressions
as trees, we observe that there must be a similar variety in the ways we traverse
a BinaryTree structure. We consider those here.

When designing iterators for linear structures there are usually few useful
choices: start at one end and visit each element until you get to the other end.
Many of the linear structures we have seen provide an elements method that
constructs an iterator for traversing the structure. For binary trees, there is no
obvious order for traversing the structure. Here are four rather obvious but
distinct mechanisms:

Preorder traversal. Each node is visited before any of its children are visited.
Typically, we visit a node, and then each of the nodes in its left subtree,
followed by each of the nodes in the right subtree. A preorder traversal of
the expression tree in the margin visits the nodes in the order: =, R, +, 1,
∗, −, L, 1, and 2.

In-order traversal. Each node is visited after all the nodes of its left subtree
have been visited and before any of the nodes of the right subtree. The in-
order traversal is usually only useful with binary trees, but similar traver-
sal mechanisms can be constructed for trees of arbitrary arity. An in-order

2-
*

R +

=

1

L 1

traversal of the expression tree visits the nodes in the order: R, =, 1, +, L,
−, 1, ∗, and 2. Notice that, while this representation is similar to the ex-
pression that actually generated the binary tree, the traversal has removed
the parentheses.

3 Reverse Polish Notation (RPN) was developed by Jan Lukasiewicz, a philosopher and mathemati-
cian of the early twentieth century, and was made popular by Hewlett-Packard in their calculator
wars with Texas Instruments in the early 1970s.



12.6 Traversals of Binary Trees 291

Postorder traversal. Each node is visited after its children are visited. We visit
all the nodes of the left subtree, followed by all the nodes of the right sub-
tree, followed by the node itself. A postorder traversal of the expression
tree visits the nodes in the order: R, 1, L, 1, −, 2, ∗, +, and =. This is
precisely the order that the keys would have to be pressed on a “reverse
Polish” calculator to compute the correct result.

Level-order traversal. All nodes of level i are visited before the nodes of level
i + 1. The nodes of the expression tree are visited in the order: =, R, +,
1, ∗, −, 2, L, and 1. (This particular ordering of the nodes is motivation
for another implementation of binary trees we shall consider later and in
Problem 12.12.)

As these are the most common and useful techniques for traversing a binary tree
we will investigate their respective implementations. Traversing BinaryTrees
involves constructing an iterator that traverses the entire set of subtrees. For
this reason, and because the traversal of subtrees proves to be just as easy, we
discuss implementations of iterators for BinaryTrees.

Most implementations of iterators maintain a linear structure that keeps
track of the state of the iterator. In some cases, this auxiliary structure is not
strictly necessary (see Problem 12.22) but may reduce the complexity of the
implementation and improve its performance.

12.6.1 Preorder Traversal

For a preorder traversal, we wish to traverse each node of the tree before any of
its proper descendants (recall the node is a descendant of itself). To accomplish
this, we keep a stack of nodes whose right subtrees have not been investigated.
In particular, the current node is the topmost element of the stack, and elements
stored deeper within the stack are more distant ancestors.

We develop a new implementation of an Iterator that is not declared
public. Since it will be a member of the structure package, it is available
for use by the classes of the structure package, including BinaryTree. The
BinaryTree class will construct and return a reference to the preorder iterator
when the preorderElements method is called:

BinaryTree

public AbstractIterator<E> preorderIterator()

// post: the elements of the binary tree rooted at node are

// traversed in preorder

{

return new BTPreorderIterator<E>(this);

}

Note that the constructor for the iterator accepts a single parameter—the root
of the subtree to be traversed. Because the iterator only gives access to values
stored within nodes, this is not a breach of the privacy of our binary tree imple-
mentation. The actual implementation of the BTPreorderIterator is short:

BTPreorder-

Iterator



292 Binary Trees

class BTPreorderIterator<E> extends AbstractIterator<E>

{

protected BinaryTree<E> root; // root of tree to be traversed

protected Stack<BinaryTree<E>> todo; // stack of unvisited nodes whose

public BTPreorderIterator(BinaryTree<E> root)

// post: constructs an iterator to traverse in preorder

{

todo = new StackList<BinaryTree<E>>();

this.root = root;

reset();

}

public void reset()

// post: resets the iterator to retraverse

{

todo.clear(); // stack is empty; push on root

if (root != null) todo.push(root);

}

public boolean hasNext()

// post: returns true iff iterator is not finished

{

return !todo.isEmpty();

}

public E get()

// pre: hasNext()

// post: returns reference to current value

{

return todo.get().value();

}

public E next()

// pre: hasNext();

// post: returns current value, increments iterator

{

BinaryTree<E> old = todo.pop();

E result = old.value();

if (!old.right().isEmpty()) todo.push(old.right());

if (!old.left().isEmpty()) todo.push(old.left());

return result;

}

}

As we can see, todo is the private stack used to keep track of references to
unvisited nodes whose nontrivial ancestors have been visited. Another way to
think about it is that it is the frontier of nodes encountered on paths from the
root that have not yet been visited. To construct the iterator we initialize the



12.6 Traversals of Binary Trees 293

A’

A B

B’

C

C’

Figure 12.6 Three cases of determining the next current node for preorder traversals.
Node A has a left child A′ as the next node; node B has no left, but a right child B′; and
node C is a leaf and finds its closest, “right cousin,” C′.

stack. We also keep a reference to the root node; this will help reset the iterator
to the correct node (when the root of the traversal is not the root of the tree,
this information is vital). We then reset the iterator to the beginning of the
traversal.

Resetting the iterator involves clearing off the stack and then pushing the
root on the stack to make it the current node. The hasNext method needs only
to check to see if there is a top node of the stack, and value returns the reference
stored within the topmost BinaryTree of the todo stack.

The only tricky method is next. Recall that this method returns the value
of the current element and then increments the iterator, causing the iterator to
reference the next node in the traversal. Since the current node has just been
visited, we push on any children of the node—first any right child, then any left.
If the node has a left child (see node A of Figure 12.6), that node (A′) is the
next node to be visited. If the current node (see node B) has only a right child
(B′), it will be visited next. If the current node has no children (see node C),
the effect is to visit the closest unvisited right cousin or sibling (C ′).

It is clear that over the life of the iterator each of the n values of the tree
is pushed onto and popped off the stack exactly once; thus the total cost of
traversing the tree is O(n). A similar observation is possible for each of the
remaining iteration techniques.

12.6.2 In-order Traversal

The most common traversal of trees is in order. For this reason, the BTInorder-

Iterator is the value returned when the elements method is called on a BinaryTree.
Again, the iterator maintains a stack of references to nodes. Here, the stack con-
tains unvisited ancestors of the current (unvisited) node.



294 Binary Trees

Thus, the implementation of this traversal is similar to the code for other
iterators, except for the way the stack is reset and for the mechanism provided
in the nextElement method:

BTInorder-

Iterator

protected BinaryTree<E> root; // root of subtree to be traversed

protected Stack<BinaryTree<E>> todo; // stack of unvisited ancestors

public void reset()

// post: resets the iterator to retraverse

{

todo.clear();

// stack is empty. Push on nodes from root to

// leftmost descendant

BinaryTree<E> current = root;

while (!current.isEmpty()) {

todo.push(current);

current = current.left();

}

}

public E next()

// pre: hasNext()

// post: returns current value, increments iterator

{

BinaryTree<E> old = todo.pop();

E result = old.value();

// we know this node has no unconsidered left children;

// if this node has a right child,

// we push the right child and its leftmost descendants:

// else

// top element of stack is next node to be visited

if (!old.right().isEmpty()) {

BinaryTree<E> current = old.right();

do {

todo.push(current);

current = current.left();

} while (!current.isEmpty());

}

return result;

}

Since the first element considered in an in-order traversal is the leftmost de-
scendant of the root, resetting the iterator involves pushing each of the nodes
from the root down to the leftmost descendant on the auxiliary stack.

When the current node is popped from the stack, the next element of the
traversal must be found. We consider two scenarios:

1. If the current node has a right subtree, the nodes of that tree have not
been visited. At this stage we should push the right child, and all the



12.6 Traversals of Binary Trees 295

nodes down to and including its leftmost descendant, on the stack.

2. If the node has no right child, the subtree rooted at the current node has
been fully investigated, and the next node to be considered is the closest
unvisited ancestor of the former current node—the node just exposed on
the top of the stack.

As we shall see later, it is common to order the nodes of a binary tree so
that left-hand descendants of a node are smaller than the node, which is, in
turn, smaller than any of the rightmost descendants. In such a situation, the
in-order traversal plays a natural role in presenting the data of the tree in order.
For this reason, the elements method returns the iterator constructed by the
inorderElements method.

12.6.3 Postorder Traversal

Traversing a tree in postorder also maintains a stack of uninvestigated nodes.
Each of the elements on the stack is a node whose descendants are currently
being visited. Since the first element to be visited is the leftmost descendant of
the root, the reset method must (as with the in-order iterator) push on each
of the nodes from the root to the leftmost descendant. (Note that the leftmost
descendant need not be a leaf—it does not have a left child, but it may have a
right.)

BTPostorder-

Iterator

protected BinaryTree<E> root; // root of traversed subtree

protected Stack<BinaryTree<E>> todo; // stack of nodes

// whose descendants are currently being visited

public void reset()

// post: resets the iterator to retraverse

{

todo.clear();

// stack is empty; push on nodes from root to

// leftmost descendant

BinaryTree<E> current = root;

while (!current.isEmpty()) {

todo.push(current);

if (!current.left().isEmpty())

current = current.left();

else

current = current.right();

}

}

public E next()

// pre: hasNext();

// post: returns current value, increments iterator

{

BinaryTree<E> current = todo.pop();



296 Binary Trees

E result = current.value();

if (!todo.isEmpty())

{

BinaryTree<E> parent = todo.get();

if (current == parent.left()) {

current = parent.right();

while (!current.isEmpty())

{

todo.push(current);

if (!current.left().isEmpty())

current = current.left();

else current = current.right();

}

}

}

return result;

}

Here an interior node on the stack is potentially exposed twice before be-
coming current. The first time it may be left on the stack because the element
recently popped off was the left child. The right child should now be pushed
on. Later the exposed node becomes current because the popped element was
its right child.

It is interesting to observe that the stack contains the ancestors of the current
node. This stack describes, essentially, the path to the root of the tree. As a
result, we could represent the state of the stack by a single reference to the
current node.

12.6.4 Level-order Traversal

A level-order traversal visits the root, followed by the nodes of level 1, from
left to right, followed by the nodes of level 2, and so on. This can be easily
accomplished by maintaining a queue of the next few nodes to be visited. MoreThis is the

family values
traversal.

precisely, the queue contains the current node, followed by a list of all siblings
and cousins to the right of the current node, followed by a list of “nieces and
nephews” to the left of the current node. After we visit a node, we enqueue the
children of the node. With a little work it is easy to see that these are either
nieces and nephews or right cousins of the next node to be visited.

BTLevelorder-

Iterator

class BTLevelorderIterator<E> extends AbstractIterator<E>

{

protected BinaryTree<E> root; // root of traversed subtree

protected Queue<BinaryTree<E>> todo; // queue of unvisited relatives

public BTLevelorderIterator(BinaryTree<E> root)

// post: constructs an iterator to traverse in level order

{

todo = new QueueList<BinaryTree<E>>();



12.6 Traversals of Binary Trees 297

this.root = root;

reset();

}

public void reset()

// post: resets the iterator to root node

{

todo.clear();

// empty queue, add root

if (!root.isEmpty()) todo.enqueue(root);

}

public boolean hasNext()

// post: returns true iff iterator is not finished

{

return !todo.isEmpty();

}

public E get()

// pre: hasNext()

// post: returns reference to current value

{

return todo.get().value();

}

public E next()

// pre: hasNext();

// post: returns current value, increments iterator

{

BinaryTree<E> current = todo.dequeue();

E result = current.value();

if (!current.left().isEmpty())

todo.enqueue(current.left());

if (!current.right().isEmpty())

todo.enqueue(current.right());

return result;

}

}

To reset the iterator, we need only empty the queue and add the root. When
the queue is empty, the traversal is finished. When the next element is needed,
we need only enqueue references to children (left to right). Notice that, unlike
the other iterators, this method of traversing the tree is meaningful regardless
of the degree of the tree.

12.6.5 Recursion in Iterators

Trees are recursively defined structures, so it would seem reasonable to con-
sider recursive implementations of iterators. The difficulty is that iterators must



298 Binary Trees

maintain their state across many calls to nextElement. Any recursive approach
to traversal would encounter nodes while deep in recursion, and the state of the
stack must be preserved.

One way around the difficulties of suspending the recursion is to initially
perform the entire traversal, generating a list of values encountered. Since the
entire traversal happens all at once, the list can be constructed using recursion.
As the iterator pushes forward, the elements of the list are consumed.

Using this idea, we rewrite the in-order traversal:

Recursive-

Iterators

protected BinaryTree<T> root; // root of traversed subtree

protected Queue<BinaryTree<T>> todo; // queue of unvisited elements

public BTInorderIteratorR(BinaryTree<T> root)

// post: constructs an iterator to traverse in in-order

{

todo = new QueueList<BinaryTree<T>>();

this.root = root;

reset();

}

public void reset()

// post: resets the iterator to retraverse

{

todo.clear();

enqueueInorder(root);

}

protected void enqueueInorder(BinaryTree<T> current)

// pre: current is non-null

// post: enqueue all values found in tree rooted at current

// in in-order

{

if (current.isEmpty()) return;

enqueueInorder(current.left());

todo.enqueue(current);

enqueueInorder(current.right());

}

public T next()

// pre: hasNext();

// post: returns current value, increments iterator

{

BinaryTree<T> current = todo.dequeue();

return current.value();

}



12.7 Property-Based Methods 299

The core of this implementation is the protected method enqueueInorder. It
simply traverses the tree rooted at its parameter and enqueues every node en-
countered. Since it recursively enqueues all its left descendants, then itself, and
then its right descendants, it is an in-order traversal. Since the queue is a FIFO,
the order is preserved and the elements may be consumed at the user’s leisure.

For completeness and demonstration of symmetry, here are the pre- and
postorder counterparts:

protected void enqueuePreorder(BinaryTree<T> current)

// pre: current is non-null

// post: enqueue all values found in tree rooted at current

// in preorder

{

if (current.isEmpty()) return;

todo.enqueue(current);

enqueuePreorder(current.left());

enqueuePreorder(current.right());

}

protected void enqueuePostorder(BinaryTree<T> current)

// pre: current is non-null

// post: enqueue all values found in tree rooted at current

// in postorder

{

if (current.isEmpty()) return;

enqueuePostorder(current.left());

enqueuePostorder(current.right());

todo.enqueue(current);

}

It is reassuring to see the brevity of these implementations. Unfortunately, while
the recursive implementations are no less efficient, they come at the obvious
cost of a potentially long delay whenever the iterator is reset. Still, for many
applications this may be satisfactory.

12.7 Property-Based Methods

At this point, we consider the implementation of a number of property-based
methods. Properties such as the height and fullness of a tree are important
to guiding updates of a tree structure. Because the binary tree is a recursively
defined data type, the proofs of tree characteristics (and the methods that verify
them) often have a recursive feel. To emphasize the point, in this section we
allow theorems about trees and methods that verify them to intermingle. Again,
the methods described here are written for use on BinaryTrees, but they are
easily adapted for use with more complex structures.

Our first method makes use of the fact that the root is a common ancestor of
every node of the tree. Because of this fact, given a BinaryTree, we can identify
the node as the root, or return the root of the tree containing the node’s parent.



300 Binary Trees

public BinaryTree<E> root()

// post: returns the root of the tree node n

{

if (parent() == null) return this;

else return parent().root();

}

A proof that this method functions correctly could make use of induction, based

BinaryTree

on the depth of the node involved.
If we count the number of times the root routine is recursively called, we

compute the number of edges from the node to the root—the depth of the node.
Not surprisingly, the code is very similar:

public int depth()

// post: returns the depth of a node in the tree

{

if (parent() == null) return 0;

return 1 + parent.depth();

}

The time it takes is proportional to the depth of the node. For full trees, we
will see that this is approximately O(log n). Notice that in the empty case we
return a height of −1. This is consistent with our recursive definition, even if
it does seem a little unusual. We could avoid the strange case by avoiding it
in the precondition. Then, of course, we would only have put off the work to
the calling routine. Often, making tough decisions about base cases can play
an important role in making your interface useful. Generally, a method is more
robust, and therefore more usable, if you handle as many cases as possible.

Principle 20 Write methods to be as general as possible.
N

NW

SW
SE

NE

W

S

E

Having computed the depth of a node, it follows that we should be able to
determine the height of a tree rooted at a particular BinaryTree. We know that
the height is simply the length of a longest path from the root to a leaf, but we
can adapt a self-referential definition: the height of a tree is one more than the
height of the tallest subtree. This translates directly into a clean implementation
of the height function:

public int height()

// post: returns the height of a node in its tree

{

if (isEmpty()) return -1;

return 1 + Math.max(left.height(),right.height());

}

This method takes O(n) time to execute on a subtree with n nodes (see Prob-
lem 12.9).



12.7 Property-Based Methods 301

Figure 12.7 Several full (and complete) binary trees.

At this point, we consider the problem of identifying a tree that is full (see
Figure 12.7). Our approach uses recursion:

public boolean isFull()

// post: returns true iff the tree rooted at node is full

{

if (isEmpty()) return true;

if (left().height() != right().height()) return false;

return left().isFull() && right().isFull();

}

Again, the method is compact. Unfortunately, detecting this property appears to
be significantly more expensive than computing the height. Note, for example,
that in the process of computing this function on a full tree, the height of every
node must be computed from scratch. The result is that the running time of the
algorithm on full trees is O(n log n). Can it be improved upon?

To find the answer, we first prove a series of theorems about the structure of
trees, with hope that we can develop an inexpensive way to test for a full tree.
Our first result determines the number of nodes that are found in full trees:

Observation 12.1 A full binary tree of height h ≥ 0 has 2h+1 − 1 nodes.

Proof: We prove this by induction on the height of the tree. Suppose the tree
has height 0. Then it has exactly one node, which is also a leaf. Since 21−1 = 1,
the observation holds, trivially.

Our inductive hypothesis is that full trees of height k < h have 2k+1 − 1
nodes. Since h > 0, we can decompose the tree into two full subtrees of height
h− 1, under a common root. Each of the full subtrees has 2(h−1)+1 − 1 = 2h − 1
nodes, so there are 2(2h − 1) + 1 = 2h+1 − 1 nodes. This is the result we sought
to prove, so by induction on tree height we see the observation must hold for
all full binary trees. �

This observation suggests that if we can compute the height and size of a
tree, we have a hope of detecting a full tree. First, we compute the size of the
tree using a recursive algorithm:



302 Binary Trees

public int size()

// post: returns the size of the subtree

{

if (isEmpty()) return 0;

return left().size() + right().size() + 1;

}

This algorithm is similar to the height algorithm: each call to size counts one
more node, so the complexity of the routine is O(n). Now we have an alternative
implementation of isFull that compares the height of the tree to the number
of nodes:

public boolean isFull()

// post: returns true iff the tree rooted at n is full

{

int h = height();

int s = size();

return s == (1<<(h+1))-1;

}

Notice the return statement makes use of shifting 1 to the left h + 1 binary
places. This efficiently computes 2h+1. The result is that, given a full tree,
the function returns true in O(n) steps. Thus, it is possible to improve on our
previous implementation.

There is one significant disadvantage, though. If you are given a tree with
height greater than 100, the result of the return statement cannot be accurately
computed: 2100 is a large enough number to overflow Java integers. Even rea-
sonably sized trees can have height greater than 100. The first implementationRedwoods and

sequoias come
to mind.

is accurate, even if it is slow. Problem 12.21 considers an efficient and accurate
solution.

We now prove some useful facts about binary trees that help us evaluate per-
formance of methods that manipulate them. First, we consider a pretty result:
if a tree has lots of leaves, it must branch in lots of places.

Observation 12.2 The number of full nodes in a binary tree is one less than the
number of leaves.

Proof: Left to the reader.�

With this result, we can now demonstrate that just over half the nodes of a full
tree are leaves.

Observation 12.3 A full binary tree of height h ≥ 0 has 2h leaves.

Proof: In a full binary tree, all nodes are either full interior nodes or leaves.
The number of nodes is the sum of full nodes F and the number of leaves L.
Since, by Observation 12.2, F = L − 1, we know that the count of nodes is
F + L = 2L − 1 = 2h+1 − 1. This leads us to conclude that L = 2h and that
F = 2h − 1. � This result demonstrates that for many simple tree methods (like



12.8 Example: Huffman Compression 303

du

0

0

0

0 0 0

0

00

1

11

1

1

1

1

1 1

1 10

!

a l

k w

I f

h

c ‘ ’ o

0 10

Figure 12.8 The woodchuck Huffman tree. Leaves are labeled with the characters they
represent. Paths from root to leaves provide Huffman bit strings.

size) half of the time is spent processing leaves. Because complete trees can be
viewed as full trees with some rightmost leaves removed, similar results hold
for complete trees as well.

12.8 Example: Huffman Compression

Information within machines is stored as a series of bits, or 1’s and 0’s. Because
the distribution of the patterns of 1’s and 0’s is not always uniform, it is possible
to compress the bit patterns that are used and reduce the amount of storage
that is necessary. For example, consider the following 32-character phrase:

Huffman

If a woodchuck could chuck wood!

If each letter in the string is represented by 8 bits (as they often are), the entire
string takes 256 bits of storage. Clearly this catchy phrase does not use the full
range of characters, and so perhaps 8 bits are not needed. In fact, there are 13
distinct characters so 4 bits would be sufficient (4 bits can represent any of 16
values). This would halve the amount of storage required, to 128 bits.

If each character were represented by a unique variable-length string of bits,
further improvements are possible. Huffman encoding of characters allows us to
reduce the size of this string to only 111 bits by assigning frequently occurring
letters (like “o”) short representations and infrequent letters (like “a”) relatively
long representations.

Huffman encodings can be represented by binary trees whose leaves are the
characters to be represented. In Figure 12.8 left edges are labeled 0, while right
edges are labeled 1. Since there is a unique path from the root to each leaf, there



304 Binary Trees

‘ ’:5 o:5c:5

h:2

f:1I:1

w:2k:2

d:3u:3

l:1a:1

!:1

2 2

43

6 7

13

4

9 10

19

32

Figure 12.9 The Huffman tree of Figure 12.8, but with nodes labeled by total frequen-
cies of descendant characters.

is a unique sequence of 1’s and 0’s encountered as well. We will use the string
of bits encountered along the path to a character as its representation in the
compressed output. Note also that no string is a prefix for any other (otherwise
one character would be an ancestor of another in the tree). This means that,
given the Huffman tree, decoding a string of bits involves simply traversing the
tree and writing out the leaves encountered.

The construction of a Huffman tree is an iterative process. Initially, each
character is placed in a Huffman tree of its own. The weight of the tree is the
frequency of its associated character. We then iteratively merge the two most
lightweight Huffman trees into a single new Huffman tree whose weight is the
sum of weights of the subtrees. This continues until one tree remains. One
possible tree for our example is shown in Figure 12.9.

Our approach is to use BinaryTrees to maintain the structure. This allows
the use of recursion and easy merging of trees. Leaves of the tree carry descrip-
tions of characters and their frequencies:

Huffman

class node

{

int frequency; // frequency of char

char ch; // the character

public node(int f)

// post: construct an entry with frequency f

public node(char c)

// post: construct character entry with frequency 1



12.8 Example: Huffman Compression 305

public boolean equals(Object other)

// post: return true if leaves represent same character

}

Intermediate nodes carry no data at all. Their relation to their ancestors deter-
mines their portion of the encoding. The entire tree is managed by a wrapper
class, huffmanTree:

class huffmanTree implements Comparable<huffmanTree>

{

BinaryTree<node> empty;

BinaryTree<node> root; // root of tree

int totalWeight; // weight of tree

public huffmanTree(node e)

// post: construct a node with associated character

public huffmanTree(huffmanTree left, huffmanTree right)

// pre: left and right non-null

// post: merge two trees together and merge their weights

public int compareTo(huffmanTree other)

// pre: other is non-null

// post: return integer reflecting relation between values

public boolean equals(Object that)

// post: return true if this and that are same tree instance

public void print()

// post: print out strings associated with characters in tree

protected void print(BinaryTree r, String representation)

// post: print out strings associated with chars in tree r,

// prefixed by representation

}

This class is a Comparable because it implements the compareTo method. That
method allows the trees to be ordered by their total weight during the merging
process. The utility method print generates our output recursively, building up
a different encoding along every path.

We now consider the construction of the tree:

public static void main(String args[])

{

// read System.in one character at a time

Scanner s = new Scanner(System.in).useDelimiter("");

List<node> freq = new SinglyLinkedList<node>();

// read data from input



306 Binary Trees

while (s.hasNext())

{

// s.next() returns string; we're interested in first char

char c = s.next().charAt(0);

// look up character in frequency list

node query = new node(c);

node item = freq.remove(query);

if (item == null)

{ // not found, add new node

freq.addFirst(query);

} else { // found, increment node

item.frequency++;

freq.addFirst(item);

}

}

// insert each character into a Huffman tree

OrderedList<huffmanTree> trees = new OrderedList<huffmanTree>();

for (node n : freq)

{

trees.add(new huffmanTree(n));

}

// merge trees in pairs until one remains

Iterator ti = trees.iterator();

while (trees.size() > 1)

{

// construct a new iterator

ti = trees.iterator();

// grab two smallest values

huffmanTree smallest = (huffmanTree)ti.next();

huffmanTree small = (huffmanTree)ti.next();

// remove them

trees.remove(smallest);

trees.remove(small);

// add bigger tree containing both

trees.add(new huffmanTree(smallest,small));

}

// print only tree in list

ti = trees.iterator();

Assert.condition(ti.hasNext(),"Huffman tree exists.");

huffmanTree encoding = (huffmanTree)ti.next();

encoding.print();

}

There are three phases in this method: the reading of the data, the construction
of the character-holding leaves of the tree, and the merging of trees into a single
encoding. Several things should be noted:

1. We store characters in a list. Since this list is likely to be small, keeping it



12.9 Example Implementation: Ahnentafel 307

ordered requires more code and is not likely to improve performance.

2. The huffmanTrees are kept in an OrderedList. Every time we remove
values we must construct a fresh iterator and remove the two smallest
trees. When they are merged and reinserted, the wrappers for the two
smaller trees can be garbage-collected. (Even better structures for man-
aging these details in Chapter 13.)

3. The resulting tree is then printed out. In an application, the information
in this tree would have to be included with the compressed text to guide
the decompression.

When the program is run on the input

If a woodchuck could chuck wood!

it generates the output:

Encoding of ! is 0000 (frequency was 1)

Encoding of a is 00010 (frequency was 1)

Encoding of l is 00011 (frequency was 1)

Encoding of u is 001 (frequency was 3)

Encoding of d is 010 (frequency was 3)

Encoding of k is 0110 (frequency was 2)

Encoding of w is 0111 (frequency was 2)

Encoding of I is 10000 (frequency was 1)

Encoding of f is 10001 (frequency was 1)

Encoding of h is 1001 (frequency was 2)

Encoding of c is 101 (frequency was 5)

Encoding of is 110 (frequency was 5)

Encoding of o is 111 (frequency was 5)

Again, the total number of bits that would be used to represent our com-
pressed phrase is only 111, giving us a compression rate of 56 percent. In these
days of moving bits about, the construction of efficient compression techniques
is an important industry—one industry that depends on the efficient implemen-
tation of data structures.

12.9 Example Implementation: Ahnentafel

Having given, in Section 12.2, time to the Republican genealogists, we might
now investigate the heritage of a Democrat, William Jefferson Clinton. In Fig-
ure 12.10 we see the recent family tree presented as a list. This arrangement is
called an ahnentafel, or ancestor table. The table is generated by performing a
level-order traversal of the pedigree tree, and placing the resulting entries in a
table whose index starts at 1.

This layout has some interesting features. First, if we have an individual
with index i, the parents of the individual are found in table entries 2i and



308 Binary Trees

1 William Jefferson Clinton
2 William Jefferson Blythe III
3 Virginia Dell Cassidy
4 William Jefferson Blythe II
5 Lou Birchie Ayers
6 Eldridge Cassidy
7 Edith Grisham
8 Henry Patton Foote Blythe
9 Frances Ellen Hines

10 Simpson Green Ayers
11 Hattie Hayes
12 James M. Cassidy
13 Sarah Louisa Russell
14 Lemma Newell Grisham
15 Edna Earl Adams

Figure 12.10 The genealogy of President Clinton, presented as a linear table. Each
individual is assigned an index i. The parents of the individual can be found at locations
2i and 2i + 1. Performing an integer divide by 2 generates the index of a child. Note the
table starts at index 1.

2i + 1. Given the index i of a parent, we can find the child (there is only one
child for every parent in a pedigree), by dividing the index by 2 and throwing
away the remainder.

We can use this as the basis of an implementation of short binary trees. Of
course, if the tree becomes tall, there is potentially a great amount of data in the
tree. Also, if a tree is not full, there will be empty locations in the table. These
must be carefully managed to keep from interpreting these entries as valid data.
While the math is fairly simple, our Lists are stored with the first element at
location 0. The implementor must either choose to keep location 0 blank or to
modify the indexing methods to make use of zero-origin indices.

One possible approach to storing tree information like this is to store entrees
in key-value pairs in the list structure, with the key being the index. In this way,
the tree can be stored compactly and, if the associations are kept in an ordered
structure, they can be referenced with only a logarithmic slowdown.

Exercise 12.4 Describe what would be necessary to allow support for trees with
degrees up to eight (called octtrees). At what cost do we achieve this increased
functionality?

In Chapter 13 we will make use of an especially interesting binary tree called
a heap. We will see the ahnentafel approach to storing heaps in a vector shortly.



12.10 Conclusions 309

12.10 Conclusions

The tree is a nonlinear structure. Because of branching in the tree, we will
find it is especially useful in situations where decisions can guide the process of
adding and removing nodes.

Our approach to implementing the binary tree—a tree with degree 2 or
less—is to visualize it as a self-referential structure. This is somewhat at odds
with an object-oriented approach. It is, for example, difficult to represent empty
self-referential structures in a manner that allows us to invoke methods. To re-
lieve the tension between these two approaches, we represent the empty tree
with class instances that represent “empty” trees.

The power of recursion on branching structures is that significant work can
be accomplished with very little code. Sometimes, as in our implementation
of the isFull method, we find ourselves subtly pushed away from an efficient
solution because of overzealous use of recursion. Usually we can eliminate such
inefficiencies, but we must always verify that our methods act reasonably.

Self Check Problems

Solutions to these problems begin on page 448.
12.1 Can a tree have no root? Can a tree have no leaves?
12.2 Can a binary tree have more leaves than interior nodes? Can it have
more interior nodes than leaves?
12.3 In a binary tree, which node (or nodes) have greatest height?
12.4 Is it possible to have two different paths between a root and a leaf?
12.5 Why are arithmetic expressions naturally stored in binary trees?
12.6 Many spindly trees look like lists. Is a BinaryTree a List?
12.7 Suppose we wanted to make a List from a BinaryTree. How might we
provide indices to the elements of the tree?
12.8 Could the queue in the level-order traversal of a tree be replaced with
a stack?
12.9 Recursion is used to compute many properties of trees. What portion of
the tree is usually associated with the base case?
12.10 In code that recursively traverses binary trees, how many recursive calls
are usually found within the code?
12.11 What is the average degree of a node in an n-node binary tree?

Problems

Solutions to the odd-numbered problems begin on page 477.
12.1 In the following binary tree containing character data, describe the
characters encountered in pre-, post- and in-order traversals.



310 Binary Trees

T

I

M

S

A

D

D

U

12.2 In the following tree what are the ancestors of the leaf D? What are the
descendants of the node S? The root of the tree is the common ancestor of what
nodes?

T

I

M

S

A

D

D

U

12.3 Draw an expression tree for each of the following expressions.

a. 1

b. 1 + 5 ∗ 3 − 4/2

c. 1 + 5 ∗ (3 − 4)/2

d. (1 + 5) ∗ (3 − 4/2)

e. (1 + (5 ∗ (3 − (4/2))))

Circle the nodes that are ancestors of the node containing the value 1.

12.4 What topological characteristics distinguish a tree from a list?

12.5 Demonstrate how the expression tree associated with the expression
R = 1 + (L − 1) ∗ 2 can be simplified using first the distributive property and
then reduction of constant expressions to constants. Use pictures to forward
your argument.

12.6 For each of the methods of BinaryTree, indicate which method can
be implemented in terms of other public methods of that class or give a rea-
soned argument why it is not possible. Explain why it is useful to cast methods
in terms of other public methods and not base them directly on a particular
implementation.

12.7 The BinaryTree class is a recursive data structure, unlike the List class.
Describe how the List class would be different if it were implemented as a
recursive data structure.

12.8 The parent reference in a BinaryTree is declared protected and is
accessed through the accessor methods parent and setParent. Why is this any
different than declaring parent to be public.

12.9 Prove that efficient computation of the height of a BinaryTree must
take time proportional to the number of nodes in the tree.



12.10 Conclusions 311

12.10 Write an equals method for the BinaryTree class. This function should
return true if and only if the trees are similarly shaped and refer to equal values
(every Object, including the Objects of the tree, has an equals method).

12.11 Write a static method, copy, that, given a binary tree, returns a copy of
the tree. Because not every object implements the copy method, you should not
copy objects to which the tree refers. This is referred to as a shallow copy.

12.12 Design a nonrecursive implementation of a binary tree that maintains
node data in a Vector, data. In this implementation, element 0 of data refer-
ences the root (if it exists). Every non-null element i of data finds its left and
right children at locations 2i+1 and 2(i+1), respectively. (The inverse of these
index relations suggests the parent of a nonroot node at i is found at location
b(i − 1)/2c.) Any element of data that is not used to represent a node should
maintain a null reference.

12.13 Design an interface for general trees—trees with unbounded degree.
Make this interface as consistent as possible with BinaryTrees when the degree
of a tree is no greater than 2.

12.14 Implement the general tree structure of Problem 12.13 using Binary-

TreeNodes. In this implementation, we interpret the left child of a BinaryTree-

Node to be the leftmost child, and the right child of the BinaryTree to be the
leftmost right sibling of the node.

12.15 Write a preorder iterator for the general tree implementation of Prob-
lem 12.14.

12.16 Implement the general tree structure of Problem 12.13 using a tree
node of your own design. In this implementation, each node maintains (some
sort of) collection of subtrees.

12.17 Write an in-order iterator for the general tree implementation of Prob-
lem 12.16.

12.18 Determine the complexity of each of the methods implemented in Prob-
lem 12.14.

12.19 Write a method, isComplete, that returns true if and only if the subtree
rooted at a BinaryTree on which it acts is complete.

12.20 A tree is said to be an AVL tree or height balanced if, for every node
n, the heights of the subtrees of n differ by no more than 1. Write a static
BinaryTree method that determines if a tree rooted at the referenced node is
height balanced.

12.21 The BinaryTree method isFull takes O(n log n) time to execute on
full trees, which, as we’ve seen, is not optimal. Careful thought shows that calls
to height (an O(n) operation) are made more often than is strictly necessary.
Write a recursive method info that computes two values—the height of the tree
and whether or not the tree is full. (This might be accomplished by having the
sign of the height be negative if it is not full. Make sure you do not call this
method on empty trees.) If info makes no call to height or isFull, its per-
formance is O(n). Verify this on a computer by counting procedure calls. This



312 Binary Trees

process is called strengthening, an optimization technique that often improves
performance of recursive algorithms.

12.22 Demonstrate how, in an in-order traversal, the associated stack can be
removed and replaced with a single reference. (Hint: We only need to know the
top of the stack, and the elements below the stack top are determined by the
stack top.)

12.23 Which other traversals can be rewritten by replacing their Linear struc-
ture with a single reference? How does this change impact the complexity of
each of the iterations?

12.24 Suppose the nodes of a binary tree are unique and that you are given
the order of elements as they are encountered in a preorder traversal and the
order of the elements as they are encountered in a postorder traversal. Under
what conditions can you accurately reconstruct the structure of the tree from
these two traversal orders?

12.25 Suppose you are to store a k-ary tree where each internal node has k
children and (obviously) each leaf has none. If k = 2, we see that Observa-
tion 12.2 suggests that there is one more leaf than internal node. Prove that a
similar situation holds for k-ary trees with only full nodes and leaves: if there
are n full nodes, there are (k − 1)n + 1 leaves. (Hint: Use induction.)

12.26 Assume that the observation of Problem 12.25 is true and that you are
given a k-ary tree with only full nodes and leaves constructed with references
between nodes. In a k-ary tree with n nodes, how many references are null?
Considerable space might be saved if the k references to the children of an
internal node were stored in a k-element array, instead of k fields. In leaves,
the array needn’t be allocated. In an 8-ary tree with only full nodes and leaves
(an “octtree”) with one million internal nodes, how many bytes of space can be
saved using this array technique (assume all references consume 4 bytes).



12.11 Laboratory: Playing Gardner’s Hex-a-Pawn

Objective. To use trees to develop a game-playing strategy.

Discussion. In this lab we will write a simulator for the game, Hex-a-Pawn. This
game was developed in the early sixties by Martin Gardner. Three white and
three black pawns are placed on a 3 × 3 chessboard. On alternate moves they
may be either moved forward one square, or they may capture an opponent on
the diagonal. The game ends when a pawn is promoted to the opposite rank, or
if a player loses all his pieces, or if no legal move is possible.

In his article in the March 1962 Scientific American, Gardner discussed a
method for teaching a computer to play this simple game using a relatively
small number of training matches. The process involved keeping track of the
different states of the board and the potential for success (a win) from each
board state. When a move led directly to a loss, the computer forgot the move,
thereby causing it to avoid that particular loss in the future. This pruning of
moves could, of course, cause an intermediate state to lead indirectly to a loss,
in which case the computer would be forced to prune out an intermediate move.

Gardner’s original “computer” was constructed from matchboxes that con-
tained colored beads. Each bead corresponded to a potential move, and the
pruning involved disposing of the last bead played. In a modern system, we can
use nodes of a tree stored in a computer to maintain the necessary information
about each board state. The degree of each node is determined by the number
of possible moves.

Procedure. During the course of this project you are to

1. Construct a tree of Hex-a-Pawn board positions. Each node of the tree is
called a GameTree. The structure of the class is of your own design, but it
is likely to be similar to the BinaryTree implementation.

2. Construct three classes of Players that play the game of Hex-a-Pawn.
These three classes may interact in pairs to play a series of games.

Available for your use are three Javafiles:

HexBoard This class describes the state of a board. The default board is the 3×3

HexBoard

starting position. You can ask a board to print itself out (toString) or to
return the HexMoves (moves) that are possible from this position. You can
also ask a HexBoard if the current position is a win for a particular color—
HexBoard.WHITE or HexBoard.BLACK. A static utility method, opponent,
takes a color and returns the opposite color. The main method of this class
demonstrates how HexBoards are manipulated.

HexMove This class describes a valid move. The components of the Vector re-

HexMove

turned from the HexBoard.moves contains objects of type HexMove. Given
a HexBoard and a HexMove one can construct the resulting HexBoard using
a HexBoard constructor.



314 Binary Trees

Player When one is interested in constructing players that play Hex-a-Pawn,
the Player interface describes the form of the play method that must
be provided. The play method takes a GameTree node and an opposing

Player

Player. It checks for a loss, plays the game according to the GameTree,
and then turns control over to the opposing player.

Read these class files carefully. You should not expect to modify them.
There are many approaches to experimenting with Hex-a-Pawn. One series

of experiments might be the following:

1. Compile HexBoard.java and run it as a program. Play a few games
against the computer. You may wish to modify the size of the board. Very
little is known about the games larger than 3 × 3.

2. Implement a GameTree class. This class should have a constructor that,
given a HexBoard and a color (a char, HexBoard.WHITE or HexBoard.BLACK),
generates the tree of all boards reachable from the specified board posi-
tion during normal game play. Alternate levels of the tree represent boards
that are considered by alternate players. Leaves are winning positions for
the player at hand. The references to other GameTree nodes are suggested
by the individual moves returned from the moves method. A complete
game tree for 3 × 3 boards has 252 nodes.608? No win

test
370? Wrong

win test
150? early stop

3. Implement the first of three players. It should be called HumanPlayer. If it
hasn’t already lost (i.e., if the opponent hasn’t won), this player prints the
board, presents the moves, and allows a human (through a ReadStream)
to select a move. The play is then handed off to the opponent.

4. The second player, RandPlayer, should play randomly. Make sure you
check for a loss before attempting a move.

5. The third player, called CompPlayer, should attempt to have the CompPlayer
object modify the game tree to remove losing moves.

Clearly, Players may be made to play against each other in any combination.
Thought Questions. Consider the following questions as you complete the lab:

1. How many board positions are there for the 3 × 4 board? Can you deter-
mine how many moves there are for a 3 × 5 board?

2. If you implement the learning machine, pit two machines against each
other. Gardner called the computer to move first H.I.M., and the ma-
chine to move second H.E.R. Will H.I.M. or H.E.R. ultimately win more
frequently? Explain your reasoning in a short write-up. What happens for
larger boards?

3. In Gardner’s original description of the game, each matchbox represented
a board state and its reflection. What modifications to HexBoard and
HexMove would be necessary to support this collapsing of the game tree?


